

# NICE – Options Appraisal Summary Table

JSM

A report from Nature Positive

Tender no. 2740293



JULY 2023



# **General notes**

| Title:          | NICE – C             | NICE – Options Appraisal Summary Table |       |                               |  |
|-----------------|----------------------|----------------------------------------|-------|-------------------------------|--|
| Client:         | JSM                  |                                        |       |                               |  |
| Issue Date:     | 18 <sup>th</sup> Oct | ober 2023                              |       |                               |  |
| Issuing Office: | Bath, Ul             | κ                                      |       |                               |  |
|                 |                      |                                        |       |                               |  |
| Author:         | Dr Rossa Donovan     | Project Manager                        | Date: | 18 <sup>th</sup> October 2023 |  |
| Reviewer:       | Dr Stephanie<br>Wray | Technical Reviewer                     | Date: | 18 <sup>th</sup> October 2023 |  |





## Contents

| 1 | EXECUTIVE SUMMARY               | 1  |
|---|---------------------------------|----|
| 2 | INTRODUCTION                    | 2  |
| 3 | OPTIONS APPRAISAL SUMMARY TABLE | 3  |
|   | 3.1 Health and Safety           | 3  |
|   | 3.2 Technical                   | 3  |
|   | 3.3 Cost                        | 5  |
|   | 3.4 Environment                 | 6  |
|   | 3.5 Socio-economic              | 12 |
| 4 | OAST SUMMARY MATRIX             | 13 |
| 5 | CONCLUSIONS                     | 14 |
|   |                                 |    |





### **1** Executive summary

Fluid-filled cables (FFCs) used in the high voltage electricity transmission system, operating at 66kV, 132kV, 275kV and 400kV, are buried in the ground in situations where overhead lines are not appropriate (e.g., for visual amenity reasons, or in urban areas).

Many of the fluid-filled cables in use were predominantly installed in the 1960's, 70's and 80's and have an average asset life of about 60 years. As such many FFCs are approaching the end of their useful life or have already been decommissioned.

The fluid used in FFCs is used to ensure the integrity of the main paper insulation and is either mineral naphthenic oil, linear alkylbenzene or a mixture. Mineral naphthenic oil is known to be toxic in aquatic ecosystems and can pollute aquifers, groundwater and freshwater bodies should the cables leak.

Until now, there have been two approaches used to decommission FFCs – they are either dug out of the ground via open trenches with cable components being recycled, or they are left in-situ after draining the majority of the cable fluid and capping the ends after which they are regularly monitored for deterioration and fluid leakage. While best efforts are made to remove all cable fluid when decommissioning redundant cables, it is not possible to remove all of it and many decommissioned cables contain residual amounts of fluid, which is why they are monitored periodically for leakage.

An innovative solution, called NICE (non-intrusive cable extraction), has been developed by JSM as an alternative to traditional cable decommissioning methods.

This report documents the outcomes of an appraisal of all three options presented as an Options Appraisal Summary Table using National Grid's approach for comparing options.

Of the three options, JSM's NICE solution was found to be, the safest, less environmentally damaging than the other two methods, more cost effective, and have fewer socio-economic impacts. A pilot study has demonstrated that the NICE solution is technically feasible and that it works well in most situations, especially for straight cable runs. As such, the NICE solution is considered to be best practice for decommissioning/removing FFCs.





### 2 Introduction

Fluid-filled cables (FFCs) are used in the high voltage electricity transmission system. Operating at 66kV, 132kV, 275kV and 400kV, FFCs are buried in the ground in situations where overhead lines are not appropriate (e.g., for visual amenity reasons, or on urban areas). It is estimated that there are 7,800km of underground fluid-filled cables (FFCs) in the UK, of which National Grid operates about 1,400km.

Many of the fluid-filled cables in use were predominantly installed in the 1960's, 70's and 80's and have an average asset life of about 60 years. As such many FFCs are approaching the end of their useful life or have already been decommissioned. The fluid used in FFCs is used to ensure the integrity of the main paper insulation and is either mineral naphthenic oil, linear alkylbenzene or a mixture. Mineral naphthenic oil is known to be toxic in aquatic ecosystems and can pollute aquifers, groundwater and freshwater bodies should the cables leak.

Until now, there have been two approaches used to decommission FFCs – they are either dug out of the ground via open trenches with cable components being recycled, or they are left in-situ after draining the majority of the cable fluid and capping the ends after which they are regularly monitored for deterioration and fluid leakage. While best efforts are made to remove all cable fluid when decommissioning redundant cables, it is not possible to remove all of it and many decommissioned cables contain residual amounts of fluid, which is why they are monitored periodically for leakage.

JSM is a utilities service provider that specialises in the delivery of integrated power and communications solutions. JSM has recently developed a solution, called NICE (non-intrusive cable extraction), which is an innovative method for removing decommissioned FFCs without the need for traditional open cut trenching for the entire length of the cable. Not only does this solution mitigate the environmental risks of leaving decommissioned cables buried, but it also enables cable components to be fully recycled. This is especially important given the price of metals, such as copper, and the push for better waste management and good circular economy practices.

JSM asked Nature Positive to carry out an options appraisal of the methods currently used in the electricity industry to decommission cable and their NICE method to compare how they differ across four categories: Health and Safety; Technical; Cost; Environment and Socio-economic. This report presents the results of the appraisal as an Options Appraisal Summary Table (OAST).





### **3 Options Appraisal Summary Table**

#### 3.1 Health and Safety

As with any cable buried, there is a risk of any parallel cables running alongside to induce a potentially harmful voltage on the metal components, which can give rise to electric shock should persons inadvertently come into contact with the cable metallic sheath or the main conductor, regardless of whether they are in service, out of service or disconnected from the substations. The risk can be mitigated in redundant cables by reducing the section lengths, however the risk is not completely removed, processes are put in place to manage the risk when work needs to be undertaken on the cables, however inadvertent contact could result in a harmful shock.

| Health and Safety                 | Option 1: Excavate<br>trench and remove<br>fluid-filled cable<br>(FFC) | Option 2: Leave FFC in<br>situ, drain fluid, cap<br>and monitor                                                                                | Option 3: NICE JSM's<br>no-dig method |
|-----------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Induced Voltage<br>Electric Shock | Risk removed.                                                          | Risk to diggers working<br>in close proximity to<br>redundant cables and<br>NG or third-party<br>operatives carrying out<br>the cable purging. | Risk removed.                         |

#### 3.2 Technical

| Technical                    | Option 1: Excavate<br>trench and remove<br>fluid-filled cable<br>(FFC)                                                         | Option 2: Leave FFC in<br>situ, drain fluid, cap<br>and monitor                                                                | Option 3: NICE<br>JSM's no-dig<br>method                                                                                                                                            |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technical complexity         | This option is not<br>expected to cause<br>any major technical<br>challenges as it is<br>already a tried and<br>tested method. | This option is not<br>expected to cause any<br>major technical<br>challenges as it is<br>already a tried and<br>tested method. | While this is a<br>relatively new<br>technique, trials have<br>shown promising<br>results – that it works<br>well in most<br>situations,<br>particularly on<br>straight cable runs. |
| Construction/delivery issues | Removal of cable<br>using this technique                                                                                       | While this option will require less machinery                                                                                  | This option is similar to option 2 except                                                                                                                                           |
|                              | will require<br>significant amounts<br>of machinery and<br>labour, deployed                                                    | and labour deployment<br>than option 1, there will<br>still be a requirement<br>for digging pits at                            | that there would no<br>need to revisit pit<br>locations to monitor                                                                                                                  |





|                                  | over a long period of<br>time across multiple<br>land-holdings. The<br>removal of the cable<br>will negate the need<br>for ongoing<br>monitoring of cables,<br>as required for option<br>2.                                           | intervals along the<br>route. This option does<br>not remove the risk of<br>fluid leaking from<br>disused cables as not<br>all the residual oil can<br>be removed. Therefore,<br>there will be a need to<br>revisit the locations<br>periodically to monitor<br>residual cable fluid<br>levels. | residual cable fluid<br>levels.                                                                                                                                                                                                                                                                                                            |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology issues                | None identified                                                                                                                                                                                                                       | None identified                                                                                                                                                                                                                                                                                 | None identified                                                                                                                                                                                                                                                                                                                            |
| Capacity issues                  | N/A                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                        |
| Network<br>efficiencies/benefits | While this option<br>does allow full<br>recovery and<br>recycling of<br>redundant FFCs<br>allowing scrap<br>materials costs to be<br>recouped, this<br>method of cable<br>recovery is the least<br>efficient of all three<br>options. | While this option<br>requires less machine<br>time and labour than<br>option 1, it does not<br>recover and recycle the<br>cable materials which<br>means scrap value<br>cannot be recouped. In<br>addition, this method<br>requires regular<br>monitoring in<br>perpetuity.                     | This option requires<br>similar levels of<br>machine time and<br>labour to option 2.<br>However, there is no<br>need for ongoing<br>monitoring and the<br>scrap value of the<br>cable can be<br>recouped.                                                                                                                                  |
| Summary                          | This option does not<br>present any<br>significant technical<br>challenges but is the<br>least efficient<br>method of all 3<br>options.                                                                                               | This option does not<br>present any<br>significant technical<br>challenges in that it is<br>a tried and tested<br>technique. It does,<br>however, require<br>ongoing monitoring<br>which the other two<br>options don't.                                                                        | This option is a<br>relatively new<br>technique, but trials<br>have shown<br>promising results in<br>most situations,<br>particularly on<br>straight cable runs.<br>In situations where<br>it is not possible to<br>deploy the NICE<br>solution (e.g., where<br>there are multiple<br>bends) options 1 or 2<br>may need to be<br>employed. |





#### 3.3 Cost

| Cost          | Option 1: Excavate<br>trench and remove<br>fluid-filled cable (FFC)         | Option 2: Leave FFC<br>in situ, drain fluid,<br>cap and monitor                                                                                                  | Option 3: NICE JSM's<br>no-dig method                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capital cost  | <i>££high</i> – this is likely<br>to be the most<br>expensive of 3 options. | <b>££moderate</b> – costs<br>are likely to be lower<br>than option 1, but<br>higher than option 3<br>because the scrap<br>value of the cable is<br>not recouped. | <b>££low</b> – this is likely to<br>be the cheapest<br>option requiring the<br>minimum amount of<br>excavation and<br>enabling the scrap<br>value of the cable to<br>be recouped. |
| Lifetime cost | N/A – no ongoing costs<br>after cable removal                               | ££low-moderate – will<br>require ongoing<br>monitoring and<br>presumably cable<br>removal eventually.                                                            | N/A – no ongoing<br>costs after cable<br>removal                                                                                                                                  |
| Summary       | This is likely to be the<br>most expensive<br>option.                       | This is likely to be the mid-cost option.                                                                                                                        | This is likely to be the<br>least expensive<br>option.                                                                                                                            |





#### 3.4 Environment

| Environment           | Option 1: Excavate<br>trench and remove<br>fluid-filled cable<br>(FFC)                                                                                                                                                                                                                                                                                                                | Option 2: Leave FFC<br>in situ, drain fluid,<br>cap and monitor                                                                                                                                                                                                                                                                                                                                                  | Option 3: NICE JSM's<br>no-dig method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of option | This option involves<br>digging an open cut<br>trench along the<br>length of the FFC<br>route, removing the<br>cable, backfilling the<br>trench and making<br>good.                                                                                                                                                                                                                   | This option involves<br>digging pits at<br>intervals, cutting the<br>cable, draining off<br>cable fluid and<br>capping the cable<br>which is then left in<br>situ and monitored<br>periodically for<br>leakage of residual<br>cable fluid.                                                                                                                                                                       | This option involves<br>digging 'launch' and<br>'receive' pits at<br>intervals along the<br>cable route, cutting<br>the cable, draining off<br>the cable fluid,<br>removing the cable in<br>sections using JSM's<br>purpose-built cable<br>de-bonding tool<br>connected to the NICE<br>rig. Recovered cables<br>are then fully recycled<br>and sub-surface<br>cavities are backfilled<br>with cement-bound<br>sand (CBS) to mitigate<br>subsidence risk or a<br>duct is pulled through<br>the cavity which can<br>be used as a conduit<br>for other services<br>(e.g., telecoms). |
| Ecology               | This option is likely to<br>have the greatest<br><b>negative impact</b> on<br>ecology as it will<br>involve the<br>destruction and<br>disturbance of<br>habitats along the<br>trench route. Impacts<br>will be greatest in<br>areas of high<br>biodiversity such as in<br>sites designated for<br>nature conservation<br>(e.g., SSSIs and<br>SACs), which often<br>contain nationally | This option will have a<br>smaller impact than<br>option 1, likely<br>resulting in only a<br><b>minor negative</b><br><b>impact</b> . It will still<br>result in the<br>destruction and<br>disturbance of<br>habitats but these will<br>only likely occur in<br>discrete locations,<br>with the possibility<br>that they will still<br>occur in areas of high<br>biodiversity such as in<br>sites designated for | This option will have a<br>smaller impact than<br>option 1 (and likely<br>similar to option 2),<br>likely resulting in only<br>a <b>minor negative</b><br><b>impact</b> . It will still<br>result in the<br>destruction and<br>disturbance of<br>habitats but these will<br>only likely occur in<br>discrete locations,<br>with the possibility<br>that they will still<br>occur in areas of high<br>biodiversity such as in                                                                                                                                                      |





|                  | Many habitats are        | (e.g., SSSIs and SACs), | nature conservation       |
|------------------|--------------------------|-------------------------|---------------------------|
|                  | difficult and            | which often contain     | (e.g., SSSIs and SACs),   |
|                  | expensive to             | nationally important    | which often contain       |
|                  | replicate/reinstate      | ,<br>habitats. Habitat  | nationally important      |
|                  | often taking years of    | restoration measures    | habitats. Habitat         |
|                  | aftercare to return      | will still be required  | restoration measures      |
|                  | them to close to pre-    | although at a much      | will still be required    |
|                  | excavation               | smaller scale than in   | although at a much        |
|                  | conditions. In           | option 1. This method   | smaller scale than in     |
|                  | addition, the            | is unlikely to have any | option 1. This method     |
|                  | presence of long         | significant impacts on  | is unlikely to have any   |
|                  | sections of trench will  | the movement of         | significant impacts on    |
|                  | cause a barrier to the   | protected and non-      | the movement of           |
|                  | movement of              | protected species       | protected and non-        |
|                  | protected and non-       | across the landscape.   | protected species         |
|                  | protected species        | Without appropriate     | across the landscape.     |
|                  | alike which may          | mitigation, there is    | Without appropriate       |
|                  | interrupt their          | still potential for     | mitigation, there is      |
|                  | breeding lifecycles or   | death or injury of      | still potential for death |
|                  | their ability to access  | animals becoming        | or injury of animals      |
|                  | important foraging       | trapped in access pits  | becoming trapped in       |
|                  | areas. This is           | although this will be   | access pits although      |
|                  | especially significant   | much reduced.           | this will be much         |
|                  | when animals are         | moenredoced.            | reduced.                  |
|                  | raising their young      |                         |                           |
|                  | when they require        |                         |                           |
|                  | much larger foraging     |                         |                           |
|                  | ranges to nourish        |                         |                           |
|                  | their young. Open        |                         |                           |
|                  | trenches also pose a     |                         |                           |
|                  | danger of death or       |                         |                           |
|                  | injury to animals that   |                         |                           |
|                  | may become trapped       |                         |                           |
|                  | in them.                 |                         |                           |
| GHG emissions    | This option is also      | This technique will     | This technique will       |
| GIIG EIIISSIOIIS | likely to have the       | produce fewer GHG       | produce fewer GHG         |
|                  | greatest <b>negative</b> | emissions than option   | emissions than option     |
|                  | impact on GHG            | 1 due to the reduced    | 1 (and similar to         |
|                  | emissions due to the     | excavation needs and    | option 2) due to the      |
|                  | amount of excavation     | reduced transport of    | reduced excavation        |
|                  | required which will      | muck/backfill to/from   | needs and reduced         |
|                  | presumably be            | site. The use of        | transport of              |
|                  | carried out by diesel    | biofuels to power       | muck/backfill to/from     |
|                  | powered machinery.       | machinery and           | site. The use of          |
|                  | This impact could be     | vehicles could be used  | biofuels to power         |
|                  | lessened by using        | to reduce GHG           | machinery and             |
|                  | biofuels. In addition,   | emissions.              | vehicles could be used    |
|                  | any transport of         |                         |                           |
|                  |                          |                         |                           |





|                    | waste materials from<br>site will likely create<br>further GHG<br>emissions given the<br>likely use of diesel-<br>powered trucks.                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to reduce GHG<br>emissions.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Again, this impact<br>could be reduced if<br>trucks were powered<br>by biodiesel.                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pollution to water | Assuming there is no<br>escape of cable fluid<br>during the removal of<br>the cables there<br>should be <b>no impact</b><br>on ground water.<br>There is a chance that<br>excavated soil could<br>escape into<br>waterways unless<br>appropriate measures<br>are put in place to<br>prevent it. | With this option, FFCs<br>are cut into sections,<br>cable fluid is removed<br>and the cable ends are<br>then capped. The<br>FFCs are left in situ<br>and monitored<br>periodically. The<br>reason for the periodic<br>monitoring is that it is<br>not possible to extract<br>all of the cable fluid<br>and therefore a<br>residual amount<br>remains. Despite<br>regular monitoring for<br>fluid escape, there is<br>always a chance that<br>fluid may escape into<br>the environment<br>should any of the caps<br>fail between<br>inspection visits. The<br>fluids used in FFCs are<br>mineral naphthenic<br>oil, linear<br>alkylbenzene or a<br>mixture, both of which<br>have been<br>provisionally<br>determined as List 1<br>substances under the<br>Groundwater<br>Regulations <u>national-<br/>fluid-filled-cable-</u><br>operating-code-<br>2015.pdf<br>(energynetworks.org). | With this option, FFCs<br>are cut into sections<br>and then removed<br>with measures taken<br>to stabilise the cavity<br>left by the cable. As<br>part of this FFC fluid<br>will need to be<br>removed and<br>assuming there is no<br>escape of cable fluid<br>during removal there<br>should be no impact<br>on ground water.<br>Furthermore, with the<br>cables removed, there<br>will be no long-term<br>risk to groundwater<br>pollution. |





|                   |                                                                                                                                                                                                                                                                                                                | Their release into<br>groundwater sensitive<br>areas is likely to be<br>problematic with the<br>potential to<br>contaminate<br>groundwater (and<br>therefore water<br>supplies) and other<br>groundwater-fed<br>aquatic environments.                                     |                                                                                                                                                                                                                                                                               |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pollution to soil | Assuming there is no<br>escape of cable fluid<br>during the removal of<br>the cables there<br>should be <b>no impact</b><br>on soil or its<br>associated biota.                                                                                                                                                | While FFC fluid is only<br>considered to be toxic<br>in the aquatic<br>environment, release<br>to soil has the<br>potential to<br>contaminate<br>groundwater and<br>other groundwater-<br>fed aquatic<br>environments.                                                    | Assuming there is no<br>escape of cable fluid<br>during the removal of<br>the cables there<br>should be <b>no impact</b><br>on soil or its<br>associated biota.                                                                                                               |
| Pollution to air  | Excavation of soil<br>poses a risk of soil<br>particles escaping<br>into the environment<br>due to wind erosion.<br>In addition,<br>particulates created<br>from exhaust fumes<br>have the potential to<br>worsen air quality –<br>this is the case for<br>both fossil-fuel<br>derived diesel and<br>biofuels. | This option is likely to<br>produce fewer<br>emissions to air, either<br>from wind erosion or<br>exhaust fumes, than<br>option 1.                                                                                                                                         | This option is likely to<br>produce fewer<br>emissions to air, either<br>from wind erosion or<br>exhaust fumes, than<br>option 1, with the<br>outcome considered<br>to be similar to option<br>2.                                                                             |
| Waste             | This option has the<br>potential to produce<br>significant amounts<br>of waste with<br>concrete and soil<br>being taken away<br>from site to landfill or<br>for processing<br>elsewhere. In<br>addition, backfill<br>materials need to be<br>sourced and                                                       | This option is likely to<br>produce much less<br>waste than option 1.<br>This option does not<br>recover or recycle any<br>of the cable<br>components. Metals<br>such as copper are<br>finite commodities<br>and are in high<br>demand, therefore<br>every effort must be | This option is likely to<br>produce much less<br>waste than option 1<br>and option 2. The<br>method ensures that<br>the cables are<br>recovered with 100%<br>of their component<br>parts recycled. This is<br>considered to be the<br>most favourable<br>option achievable in |





|                            | transported to site as                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | made to recycle them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the waste hierarchy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | part of the backfilling<br>operation. The cable<br>materials (oil,<br>armoured layer,<br>aluminium, copper<br>and PVC sheathing<br>can be fully recycled<br>by using this<br>technique.                                                                                                                                                                                                                                                                                                            | where possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and represents good<br>circular economy<br>practice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Noise                      | There is the potential<br>for negative noise<br>impacts using this<br>technique as a result<br>of the need for<br>prolonged periods of<br>excavation and the<br>transport of materials<br>to and from site. This<br>has the potential to<br>affect both human<br>and animal receptors.<br>While noise<br>mitigation measures<br>can be put in place to<br>reduce the impacts of<br>the noise, they aren't<br>100% effective and<br>there will still be<br>some residual noise-<br>related impacts. | There is the potential<br>for negative noise<br>impacts using this<br>technique as a result<br>of the need for<br>excavation and the<br>transport of materials<br>to and from site.<br>Although, this will be<br>much reduced<br>compared to option 1.<br>This has the potential<br>to affect both human<br>and animal receptors.<br>While noise mitigation<br>measures can be put<br>in place to reduce the<br>impacts of the noise,<br>they aren't 100%<br>effective and there<br>will still be some<br>residual noise-related<br>impacts. | There is the potential<br>for negative noise<br>impacts using this<br>technique as a result<br>of the need for<br>excavation and the<br>transport of materials<br>to and from site.<br>Although, this will be<br>much reduced<br>compared to option 1.<br>This has the potential<br>to affect both human<br>and animal receptors.<br>While noise mitigation<br>measures can be put<br>in place to reduce the<br>impacts of the noise,<br>they aren't 100%<br>effective and there will<br>still be some residual<br>noise-related impacts. |
| Disturbance/disrupti<br>on | This option takes the<br>longest amount of<br>time to achieve and<br>can affect large areas<br>of land at the same<br>time. This is likely to<br>result in longer<br>periods of<br>disturbance to both<br>humans and animals<br>when compared with<br>options 2 and 3. In<br>addition, this method<br>can result in<br>economic disruption                                                                                                                                                         | This option is likely to<br>cause less<br>disturbance/disruption<br>than option 1 and will<br>affect smaller, more<br>discrete areas. There<br>is still likely to be<br>some (although<br>reduced compared to<br>option 1)<br>disruption/disturbance<br>to humans and<br>animals. The same can<br>be said for economic<br>disruption.                                                                                                                                                                                                        | Disturbance/disruptio<br>n levels are likely to be<br>the same as option 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |





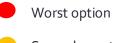
|         | due to road closures<br>or disruption to<br>agricultural land for<br>example.                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary | This is the most<br>environmentally<br>damaging option<br>when compared with<br>the other two<br>options. This<br>method will have the<br>greatest negative<br>impacts on ecology,<br>produce the most<br>waste, noise, GHG<br>emissions, pollution<br>to air and<br>disturbance/disrupti<br>on to animal and<br>human receptors,<br>and economic<br>disruption. This<br>method does enable<br>the recovery and<br>recycling of the cable<br>and its components<br>which is obviously<br>desirable. | This option is<br>potentially less<br>damaging than<br>option 1 and<br>potentially more<br>damaging than<br>option 3.<br>Environmental<br>impacts are likely to<br>be broadly similar to<br>option 3 with regards<br>to ecology, GHG<br>emissions, pollution<br>to air, noise and<br>disturbance/disruptio<br>n. However, the risk<br>of FFC fluid escape to<br>soil, groundwater<br>and freshwater-fed<br>aquatic<br>environments and<br>the missed<br>opportunity to<br>recycle redundant<br>cable materials mean<br>that this option is<br>inferior to option 3. | This option is the<br>least environmentally<br>damaging of all 3<br>options. While there<br>will be some negative<br>impacts with respect<br>to ecology, GHG<br>emissions, noise,<br>pollution to air and<br>disturbance/disruptio<br>n, these are likely to<br>minor and mitigation<br>measures can be used<br>to minimise or avoid<br>impacts. Pollution<br>impacts to soil and<br>water are considered<br>unlikely provided<br>appropriate<br>measures are put in<br>place to prevent the<br>escape of cable oil<br>into the<br>environment. This<br>method does enable<br>the recovery and<br>recycling of the cable<br>and its components<br>which is obviously<br>desirable. |





#### 3.5 Socio-economic

| Socio-<br>economics | Option 1: Excavate<br>trench and remove<br>fluid-filled cable (FFC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Option 2: Leave FFC in<br>situ, drain fluid, cap and<br>monitor                                                                                                                                                                                                                                                                                                                                                                                                       | Option 3: NICE JSM's<br>no-dig method                                                                                                                                                                                                                                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Socio-<br>economics | This option is likely to<br>have the greatest<br>negative socio-<br>economic impact. Given<br>that the method<br>involves removal of the<br>cable using an open<br>trench method, it is<br>likely to cause<br>disruption for multiple<br>landowners and the<br>public. For example,<br>where cables are<br>located in agricultural<br>land, this could have<br>economic impacts due<br>to reduced productivity.<br>Where cables are<br>located in roads, this<br>could lead to road/lane<br>closures which is likely<br>to reduce traffic flow<br>and increase journey<br>times which may have<br>minor negative impacts<br>on the local economy as<br>well as other impacts<br>such as poorer air<br>quality. | This option will have a<br>smaller negative socio-<br>economic impact than<br>option 1. The range of<br>impacts are likely to be<br>the same although<br>reduced in magnitude<br>and duration. Repeated<br>monitoring visits may<br>have minor impacts.<br>However, in the event of<br>any fluid leaking from the<br>cables and entering<br>groundwater or<br>freshwater bodies, there<br>is a chance of additional<br>long-term negative socio-<br>economic impacts. | This option will have a<br>smaller negative socio-<br>economic impact than<br>options 1 or 2. Where<br>cavities are backfilled<br>with ducts rather than<br>CBS there is potential<br>for a positive socio-<br>economic impact as<br>this will enable the<br>laying of new cables<br>with minimal<br>disruption compared<br>to current installation<br>techniques. |
| Summary             | This option will have<br>the greatest negative<br>socio-economic<br>impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | This option will have the second-greatest negative socio-economic impacts.                                                                                                                                                                                                                                                                                                                                                                                            | This option will have<br>the smallest negative<br>socio-economic<br>impacts.                                                                                                                                                                                                                                                                                       |






# 4 OAST Summary Matrix

| Category/Option | Option 1:<br>Trench and<br>remove | 1 | Option 3:<br>NICE |
|-----------------|-----------------------------------|---|-------------------|
| Health & Safety |                                   |   |                   |
| Technical       | •                                 | • |                   |
| Cost            |                                   | • |                   |
| Environment     |                                   |   |                   |
| Socio-economic  |                                   | • |                   |

#### Key:



Second worst option

Best option





### **5** Conclusions

JSM's NICE solution was found to be the best option of the three options considered.

From a health and safety perspective, the NICE solution, along with option 1, completely removes potentially harmful electric shock risks from induced voltages.

Importantly, the NICE solution has the smallest environmental impact, mainly because damage to biodiversity is much reduced when compared to option 1 (excavate trench and remove FFC), but also because it removes the risk of fluid leakage and allows all materials to be recycled which is not possible with option 2 (drain FFC and leave in situ).

The NICE solution was also considered to be the most cost-effective of the three options. Given the high price of copper and other metals used in FFCs, the recovery and recycling of cables has been shown to more than offset the costs of cable removal in one of the pilot studies and has the potential to vastly reduce the costs of removing redundant cables across the network, when compared with options 1 and 2.

The NICE solution was also considered to have the least socioeconomic impacts when compared to options 1 and 2.

Of the three options, JSM's NICE solution was found to be, the safest, less environmentally damaging than the other two methods, more cost effective, and have fewer socio-economic impacts. A pilot study has demonstrated that the NICE solution is technically feasible and that it works well in most situations, especially for straight cable runs. As such, the NICE solution is considered to be best practice for decommissioning/removing FFCs.

